Hydrodynamical noise and Gubser flow

Hanna Grönqvist IPhT, CEA Saclay

In collaboration with Li Yan ArXiv 1511.07198

Heavy ion collision modeling: state of the art

Heavy-ion collisions are understood in terms of:

Initial-state fluctuations

Figure: Random nucleus

• Hydrodynamical evolution

Figure: hydro

Role of fluctuations?

- At experiments, even small systems such as those produced in proton-nucleus collisions seem to produce a fluid.
- Is the ridge seen in proton-proton collisions also due to the formation of a fluid?
 - The question arises:
 What is the role of thermal fluctuations in such small systems?

Figure: System whose variations are large when zooming in on a small part.

Two different sources of fluctuations: initial and thermal ones.

Different fluctuations

Initial-state fluctuations

• Quantum mechanical origin.

Thermal fluctuations

• Present in all systems with T > 0.

Fluctuations in the hydro evolution of a heavy-ion collision

• Hydrodynamics: $\partial_{\mu}T^{\mu\nu}=0$ & Equation of state

$$T^{\mu\nu} = T_0^{\mu\nu} + \underbrace{\delta T^{\mu\nu}}_{\text{fluct.}} , \quad \delta T^{\mu\nu} = \left\{ egin{array}{l} \delta I \\ \delta u^{\mu} \\ S^{\mu\nu} \leftrightarrow \Pi^{\mu\nu} \end{array} \right.$$

- ullet $T^{\mu
 u}$ is the energy-momentum tensor
- u^{μ} is the flow four-velocity
- $S^{\mu\nu}$ is the noise tensor
- $\Pi^{\mu\nu}$ is the stress tensor

Solving linearized noisy hydro

$$\left\{ \begin{array}{l} \partial_{\mu}T_{0}^{\mu\nu}=0 \quad \rightarrow \text{ analytically (Bjorken}^{1}, \ \underline{\text{Gubser}}) \\ \partial_{\mu}\delta\,T^{\mu\nu}=0 \end{array} \right.$$

¹Kapusta, Müller, Stephanov 2012

Fluctuations in the hydro evolution of a heavy-ion collision

• Hydrodynamics: $\partial_{\mu} T^{\mu\nu} = 0$ & Equation of state

$$T^{\mu\nu} = T_0^{\mu\nu} + \underbrace{\delta T^{\mu\nu}}_{\text{fluct.}} , \quad \delta T^{\mu\nu} = \left\{ egin{array}{l} \delta I \\ \delta u^{\mu} \\ S^{\mu\nu} \leftrightarrow \Pi^{\mu\nu} \end{array} \right.$$

- ullet $T^{\mu
 u}$ is the energy-momentum tensor
- u^{μ} is the flow four-velocity
- $S^{\mu\nu}$ is the noise tensor
- $\Pi^{\mu\nu}$ is the stress tensor

Solving linearized noisy hydro

$$\left\{ \begin{array}{l} \partial_{\mu}T_{0}^{\mu\nu}=0 \quad \rightarrow \text{ analytically (Bjorken}^{1}, \ \underline{\text{Gubser}} \\ \partial_{\mu}\delta\,T^{\mu\nu}=0 \end{array} \right.$$

¹Kapusta, Müller, Stephanov 2012

Fluctuations in the hydro evolution of a heavy-ion collision

• Hydrodynamics: $\partial_{\mu}T^{\mu\nu} = 0$ & Equation of state

$$T^{\mu\nu} = T_0^{\mu\nu} + \underbrace{\delta T^{\mu\nu}}_{\text{fluct.}} , \quad \delta T^{\mu\nu} = \left\{ egin{array}{l} \delta T \ \delta u^{\mu} \ S^{\mu\nu} \leftrightarrow \Pi^{\mu\nu} \end{array}
ight.$$

- $T^{\mu\nu}$ is the energy-momentum tensor
- u^{μ} is the flow four-velocity
- $S^{\mu\nu}$ is the noise tensor
- $\Pi^{\mu\nu}$ is the stress tensor

Solving linearized noisy hydro:

$$\left\{ \begin{array}{l} \partial_{\mu} T_{0}^{\mu\nu} = 0 \\ \partial_{\mu} \delta T^{\mu\nu} = 0 \end{array} \right. \rightarrow \text{analytically (Bjorken}^{1}, \, \underline{\text{Gubser}})$$

¹Kapusta, Müller, Stephanov 2012

Fluctuation-dissipation theorem

$$\left\langle S^{\mu\nu}S^{\alpha\beta}\right\rangle \sim \frac{\eta}{s} \; \frac{1}{\Delta V \Delta t} \; \Lambda^{\mu\nu\alpha\beta}$$

- Notation:
 - η/s viscosity over entropy ratio
 - $\Delta V \Delta t$ space-time volume
 - $\Lambda^{\mu\nu\alpha\beta}$ unknown tensor
- Thermal fluctuations are related to dissipations.
- Thermal fluctuations are more significant in small systems.
- The structure of $\Lambda^{\mu\nu\alpha\beta}$ may be involved.

Characteristics of Gubser ² hydro

Exact solution to the equations of hydrodynamics.

- Conformal equation of state $\varepsilon = 3p$
- Boost invariant longitudinal expansion (Bjorken)
- Rotational sym. wrt. the beam axis (p-A and ultra-central A-A)
- Finite transverse size & transverse expansion for $\tau > 0$

²Gubser and Yarom 2010

Gubser hydro

Non-trivial analytic solution of hydro with transverse expansion.

- Conformal symmetry
 - \Rightarrow hydro eqs are invariant under general coordinate transformations.
 - Uniform fluid at rest in a certain geometry (dS $_3 imes \mathbb{R})$

Non-uniform expanding fluid in usual laboratory space-time.

The two space-times are related by coordinate transformations:

$$(\tau, \xi, \mathbf{r}, \phi) \mapsto (\rho, \xi, \theta, \phi)$$

- ullet au is the proper time
- r is the radius in the transverse plane
- \bullet ρ is the de Sitter time
- ξ is the spatial rapidity
- θ , ϕ are the coordinates on the sphere
- Denote all quantities in $dS_3 \times \mathbb{R}$ space-time by 'hats'.
- Rotational SO(3) symmetry in new coordinate system (θ, ϕ) .

Evolution of ϵ and v_{\perp} vs r for Pb-Pb $(\eta/s = 0)$ ϵ =energy density, v_{\perp} = transverse velocity of fluid

Gubser hydro and thermal noise

• Correlation of thermal noise in Gubser hydro, $(X o (\rho, \theta, \phi, \xi))$

$$\left\langle \hat{S}^{\mu\nu}(X_1)\hat{S}^{\alpha\beta}(X_2)\right\rangle \propto \frac{\eta}{s}\hat{P}^{\mu\nu}\hat{P}^{\alpha\beta}\delta(X_1-X_2)$$

• Tensor structure of $\hat{S}^{\mu\nu}$ is simplified, thanks to $\hat{u}^{\mu}=(1,0,0,0)$.

$$\hat{S}^{\mu\nu}(X) = \hat{w}(\rho)\hat{f}(X)\hat{P}^{\mu\nu} \,, \quad \hat{P}^{\mu\nu} = {\rm diag} \left[0,1,1,-2\right] \,,$$

and we have the correlation of the scalar function

$$\left\langle \hat{f}(X_1)\hat{f}(X_2)\right\rangle = \frac{2\nu}{\hat{w}\cosh^2\rho_1\sin\theta_1}\delta(X_1-X_2) \;,\quad \nu = \frac{4}{3}\frac{\hat{\eta}}{\hat{s}}$$

- Magnitude of thermal noise is constrained by $\hat{w} \sim$ multiplicity Multiplicity more crucial than system size.
 - Same conclusion for Bjorken case.

Noisy Gubser flow

- We solve the Gubser flow mode by mode.
- Decompose thermal fluctuations into scalar and vector modes using spherical symmetry in transformed coordinates $(\rho, \theta, \phi, \xi)$:

$$\delta \hat{T}(\rho, \theta, \phi, \xi) = \hat{T}(\rho) \sum_{l,m} \int \frac{dk_{\xi}}{2\pi} \delta_{lm}(\rho, k_{\xi}) Y_{lm}(\theta, \phi) e^{ik_{\xi}\xi}$$

$$\delta \hat{u}_{i}(\rho, \theta, \phi, \xi) = \sum_{l,m} \int \frac{dk_{\xi}}{2\pi} \left[v_{lm}^{s}(\rho, k_{\xi}) \partial_{i} Y_{lm}(\theta, \phi) + v_{lm}^{v}(\rho, k_{\xi}) \Phi_{i(lm)}(\theta, \phi) \right] e^{ik_{\xi}\xi}$$

$$\delta \hat{u}_{\xi}(\rho, \theta, \phi, \xi) = \sum_{l,m} \int \frac{dk_{\xi}}{2\pi} v_{lm}^{\xi}(\rho, k_{\xi}) Y_{lm}(\theta, \phi) e^{ik_{\xi}\xi}$$

$$\hat{f}(\rho, \theta, \phi, \xi) = \sum_{l,m} \int \frac{dk_{\xi}}{2\pi} h_{lm}(\rho, k_{\xi}) Y_{lm}(\theta, \phi) e^{ik_{\xi}\xi}$$

Gubser hydro and thermal noise

Each mode evolves according to a Langevin–type equation (from $\partial_{\mu}\delta T^{\mu\nu}=0$):

$$\tilde{\mathcal{V}}_{l}'(\rho) = \underbrace{-\hat{\Gamma}(\rho, l, k_{\xi})\tilde{\mathcal{V}}_{l}(\rho)}_{\text{drag}} + \underbrace{\tilde{\mathcal{K}}(\rho, k_{\xi})}_{\text{noise}}$$

$$\tilde{\mathcal{V}}_{l}(\rho) = \begin{pmatrix} \delta_{l}(\rho) \\ v_{ls}(\rho) \\ v_{l\xi}(\rho) \\ v_{lV}(\rho) \end{pmatrix}, \quad \tilde{\Gamma} \text{ is a } 4 \times 4 \text{ matrix,} \quad \tilde{\mathcal{K}} = \begin{pmatrix} -\frac{2}{3} \tanh \rho h(\rho) \\ \frac{2\hat{T}}{3\hat{T}'} \tanh \rho h(\rho) \\ -\frac{i4k_{\xi}\hat{T}}{\hat{T} + H_{0} \tanh \rho} h(\rho) \\ 0 \end{pmatrix}$$

Vector modes are decoupled, and NOT affected by thermal noise.

Solving noisy Gubser flow

- Ultra-central Pb-Pb, p-Pb and p-p.
- The height (\hat{T}_0) and width (q^{-1}) of the Gubser solution are determined using the multiplicity and transverse size.

	PbPb	pPb	pp
\hat{T}_0	7.3	3.1	2.0
$q^{-1}(fm)$	4.3	1.1	1.1

- Approximates system evolution during first several fm's.
- $k_{\xi} = 0$ mode:
 - Long-range rapidity correlations.
 - Further simplification with v_{ξ} modes decoupled and indep. of noise \Rightarrow 2 coupled eqs.

Evolution of temperature profile

 $T(au, ec{x}_{\perp})$ without and with thermal noise, one random event

• x, y are coordinates in the plane transverse to the collision axis.

Pb-Pb

Evolution of temperature profile

 $T(au, ec{x}_{\perp})$ without and with thermal noise, one random event

• x, y are coordinates in the plane transverse to the collision axis.

p-Pb

Evolution of temperature profile

 $T(\tau, \vec{x}_{\perp})$ without and with thermal noise, one random event

• x, y are coordinates in the plane transverse to the collision axis.

p-p

Hydro & experimental data

Experimental signature of hydro: 2-particle correlations averaged over many events.

- Hydro explains the long-range wave structure but not the short-range peak.
- What is the role of hydro fluctuations for the long-range & the short-range correlations?

Making contact with data

Two-particle correlations are not directly calculable in hydro:

- No hadronization or freeze-out.
- Hydro behavior seen through the final particle spectrum.

What we CAN do, however, is to study an object similar to that of two-particle correlations: The two-point correlator of radial flow.

Radial flow because we are interested in the transverse expansion.

$$\frac{\mathsf{Experiments}}{\langle \mathit{N}(\xi_1,\phi)\mathit{N}(\xi_2,\phi+\Delta\phi)\rangle} \sim \frac{\mathsf{Theory}}{\langle \mathit{u_r}(r,\phi)\mathit{u_r}(r,\phi+\Delta\phi)\rangle}$$

Solving the two-point function of noise

Formal solution:

$$\langle ilde{\mathcal{V}}_I ilde{\mathcal{V}}_I
angle =$$
 Initial fluc. + Thermal fluc.

Initialization of numerics for short-range (1) & long-range (2) initial fluctuations:

1)
$$\delta \hat{T}(\theta, \phi, \rho_0, \xi) = \text{const.} \times \delta(\theta - \theta_0)\delta(\phi - \phi_0) = \sum_{l,m} \text{all modes}$$

or

2)
$$\delta \hat{T}(\theta, \phi, \rho_0, \xi) = \text{const.} \times \left[(-1)^n \frac{1}{\sqrt{2}} Y_{n,n}(\theta, \phi) + \frac{1}{\sqrt{2}} Y_{n,-n}(\theta, \phi) \right]$$

Solving the two-point function of noise

Formal solution:

$$\langle \tilde{\mathcal{V}}_l \tilde{\mathcal{V}}_l \rangle = \text{Initial fluc.} + \text{Thermal fluc.}$$

Initialization of numerics for short-range (1) & long-range (2) initial fluctuations:

1)
$$\delta \hat{T}(\theta, \phi, \rho_0, \xi) = \text{const.} \times \delta(\theta - \theta_0)\delta(\phi - \phi_0) = \sum_{l,m} \text{all modes}$$

or

2)
$$\delta \hat{T}(\theta, \phi, \rho_0, \xi) = \text{const.} \times \left[(-1)^n \frac{1}{\sqrt{2}} Y_{n,n}(\theta, \phi) + \frac{1}{\sqrt{2}} Y_{n,-n}(\theta, \phi) \right]$$

$$n=2$$
 $n=3$ $n=4$ $n=5$

$$\varepsilon_2(Pb-Pb) \sim 0.05$$
, $\varepsilon_2(p-Pb) \sim 0.15$ & $\varepsilon_2(p-p) \sim 0.2 \Rightarrow$ gives const.

Radial flow correlation

We choose an observable to characterize the correlation:

$$C_{u_r u_r}(\tau, r, \Delta \varphi) = \langle u_r(\tau, r, \varphi) u_r(\tau, r, \varphi + \Delta \varphi) \rangle$$
 – background
= $C_{u_r u_r}^T + C_{u_r u_r}^I$

- Equal time (τ) and equal radius (r).
- To see the effect of hydro noise we rescale as follows:

Rescaled
$$C_{u_r u_r} \equiv \frac{C_{u_r u_r}^T}{\text{amplitude of } C_{u_r u_r}^I}$$

• Snapshot at $\tau = 2.5$ fm.

Effect of noise on short-range correlations

Effect of noise on short-range correlations

Details of the near-side peak in $C_{u_ru_r}^T$ vs $\Delta\phi$

Effect of noise on long-range correlations

Conclusions

- The absolute amplitude of hydro noise in ultra-central heavy-ion collisions is essentially determined by the multiplicity.
- Long-range correlations \rightarrow evolution of eccentricity:
 - Additional contribution to eccentricity from noise.
 - Stronger in p-p and higher-order harmonics.
 - Effects are NOT sizeable.
- Short-range correlations:
 - Noise contributes to the formation of a near-side peak on top of the structure coming from initial state fluctuations:
 - The height and width of the peak grow from Pb-Pb to p-p.

Outlook:

- Longitudinal fluctuations along longitudinal direction, $k_{\xi} \neq 0$?
- Second order viscous hydrodynamics?

Backup slides

Coordinate transformation

• Weyl rescaling $\mathbb{R}^{1,3} o \mathsf{dS}_3 imes \mathbb{R}$: $g_{\mu\nu} o \tilde{g}_{\mu\nu} = g_{\mu\nu}/\tau^2$ Now the metric reads

$$\mathsf{d} ilde{s}^2 = rac{1}{ au^2} \left(-\mathsf{d} au^2 + \mathsf{d}ec{x}_\perp^2
ight) + \mathsf{d}\xi^2 \; .$$

• Reparametrize dS₃ by the mapping (au, r) o (
ho, heta) :

$$\sinh
ho = -rac{1-q^2 au^2+q^2r^2}{2q au}$$
 $an heta = rac{2q au}{1+q^2 au^2-q^2r^2}$

so that the symmetry $SO(1,1) \times \mathcal{Z}_2 \times SO(3)$ is now manifest :

$$\mathrm{d}\hat{s}^2 = \mathrm{d}\rho^2 + \mathrm{d}\xi^2 + \cosh^2\rho\left(\mathrm{d}\theta^2 + \sin^2\theta\mathrm{d}\phi\right) \ .$$

Temperatures and multiplicities

$$\hat{T}_0 = \frac{1}{f_*^{1/12}} \left(\frac{3}{16\pi} \frac{dS}{d\xi} \right)^{1/3}$$

where $f_* = \epsilon/T^4 = 11$ is extracted from lattice calculations and

$$\frac{\mathrm{d}S}{\mathrm{d}\xi} = 7.5 \frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}y} \ .$$

- Pb-Pb: $\sqrt{s_{NN}}=2.76$ TeV corresponding to $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}y\sim1600$
- p-Pb: $\sqrt{s_{NN}}=5.02$ TeV corresponding to $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}y\sim150$
- p-p: $\sqrt{s}=13$ TeV corresponding to $\mathrm{d}N_\mathrm{ch}/\mathrm{d}y\sim100$